

0 はじめに

『日程』

▶ 第一回:構造力学1(力・力のつりあい、静定梁の反力、静定ラーメンの反力、教科書P2~21)

▶ 第二回:構造力学2(静定梁に生ずる力(応力)・静定ラーメンに生ずる力(応力)、教科書P22~39)

▶ 第三回:構造力学3(静定トラス部材に生ずる力(応力)、断面の性質、教科書P40~56)

▶ 第四回: 材料力学1(応力度、梁の変形・座屈、教科書P57~74)

『本テキストの用語』

【本日の目標】: 講義で行う単元のリストです、それぞれに相当する演習問題もあわせて示します

> **《演習問題》**: 当該分野における演習問題です

▶ (解法手順):演習問題を解くための解法手順です、当該範囲の問題全てで有効です、順序を順守してください

▶ 『ポイント』: 当該範囲の重要ポイントへのコメントです

『過去問一覧(10年分)』

項目	例題(本テキスト)	出題率	H23	H22	H21	H20	H19	H18	H17	H16	H15	H14
モーメント	2 · 3 · 4	20%			0			0				
力の合成	5	20%	0	0								
力の釣り合い	7	30%				0	0				0	
支点の反力	8.9	20%						0				0
梁の応力	10 · 11 · 12	90%	0	0	0	Δ	0	0	0	Δ	0	
ラーメンの応力	13 · 14	60%			0	0	0		0	0	0	
3 ヒンジラーメン	15	20%	0									0
応力図	16 · 17	10%		0								
トラス	18 · 19	100%	0	0	0	0	0	0	0	0	0	0
図心(断面 1 次 M)	20	10%						0				
断面2次M	21	90%	0	0	0	0	0		0	0	0	0
応力度	23	40%			0	0					0	0
許容応力度	24	30%	0				0		0	0		
ひずみ	25	10%						0				
たわみ	26	20%				Δ				Δ		
座屈	27	100%	0	0	0	0	0	0	0	0	0	0

『近年の建築士試験(@学科Ⅲ構造計算系問題)の概況』

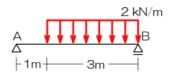
- 1) 出題頻度: 非常に高いものは「梁・ラーメンの応力」「トラス」「座屈」の3項目で本年もまず間違いなく出題されると思われる
- 2) 最重要事項:「力の釣り合い」の知識は、出題頻度の高い「支点の反力」「梁・ラーメンの応力」「トラス」で用いられる
- 3) 問題の高度化:近年出題されていない「支点の反力」は発展された問題である「応力」に包括、同様に「応力度」は「許容応力度」に包括され、問題が難しくなる傾向がある
- 4) まとめ:「力の釣り合い」「応力」「トラス」「座屈」の4項目をクリアできれば4点以上は確保可能です

【本日の目標】(以下ページ番号はサプテキ)

- 1) 分力を集中荷重へ変換できる ⇒ P3 《演習問題 1》
- 2) 任意の点のモーメントが求められる ⇒ P4 **(演習問題 2)、**P5 **(演習問題 3)**、P5 **(演習問題 4)**
- 3) 平行 2 力の合成ができる ⇒ P6 《演習問題 5》
- 4) 斜めの力を鉛直・水平に分力できる ⇒ P7 **《演習問題 6》**
- 5) つりあい状態にある場合の未知の力を求めることができる ⇒ P9 **《演習問題 7》**
- 6) 各種構造物の支点反力をもとめることができる ⇒ P10 (演習問題 8)、P11 (演習問題 9)

1	構造力学

- 1.1 カ、カのつりあい
 - 1) 力(集中荷重・分布荷重)
 - ◇ 力の三要素
 - ・ 力の3要素をチェックしておきましょう


- ◇ 力の種類
 - 集中荷重:
 - 分布荷重:
 - ・ モーメント荷重:
 - 斜めの荷重:

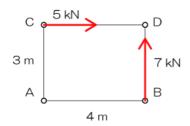
◇ 分布荷重

· 分布荷重に出会ってしまったら ⇒ 集中荷重へ置き換える

《演習問題 1》以下の分布荷重を集中荷重への置き換えよ (解

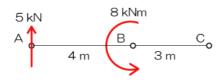
(解法手順)

- 1) 荷重の合計を求める
 - ⇒ 囲まれたエリアの「面積」が荷重の合計
- 2) 荷重の作用点の位置を決定する
 - ⇒ 囲まれたエリアの重心に作用


- □ 力の三要素とは:大きさ・作用点・方向(作用線)
- □ 分布荷重は、集中荷重へ置き換える(「力の大きさ」は面積、「作用点」は重心)
- 2) カのモーメント(モーメント・モーメント荷重)
 - ◊ モーメントとは
 - ・ 任意の点にかかる回転の力、シーソー・てこの原理など

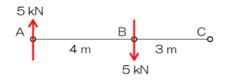
◊ モーメントの符号

◊ 複数の荷重によるモーメント


《演習問題 2》以下の A-D の各点のモーメントを求めよ

- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが+、反時計回りが-)
- 6) 上記モーメントを合算

《演習問題 3》以下の各点のモーメントを求めよ


(解法手順)

- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが+、反時計回りが-)
- 6) 上記モーメントを合算

『ポイント』

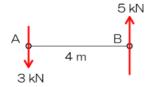
- □ モーメントは距離の概念が重要です、作用線は「必ず」図示しておきましょう
- □ モーメント荷重は全ての点に等しいモーメントの影響を与えます
- 3) 偶力のモーメント
 - ◊ 偶力とは
 - ・ 作用線が並行で力の大きさが等しく、真逆な一対の力のこと
 - · 全ての点でのモーメントが等しくなる

《演習問題 4》以下の各点のモーメントを求めよ

(解法手順)

- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが十、反時計回りが一)
- 6) 上記モーメントを合算

『ポイント』


□ 一対の偶力が生じている場合、全ての点においてモーメントの値は等しくなります

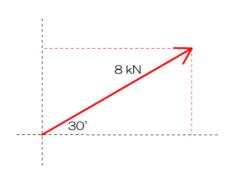
- 4) 力の合成 (バリニオンの定理)
 - ◊ バリニオンの定理とは

◊ 分布荷重の合成

《演習問題 5》以下の 2 力を合成せよ

(解法手順)

- 1) 基準となる点を指定
 - ⇒ いずれかの力の作用線上が良い
- 2) 上記点における合成前のモーメント算定
- 3) 合成後の力の大きさを算定
- 4) 合成後の力の位置を過程
 - ⇒ 1)の点からの距離をxと仮定
- 5) 合成後の力による 1) の点におけるモーメント算定
- 6) 2) のモーメント=5) のモーメントより x を算定


『ポイント』

□ 合成前のモーメント=合成後のモーメント (バリニオンの定理) を用いて合成後の荷重の作用点を求めます

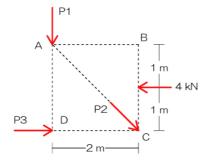
- 5) 力の分解(斜めの力の分解)
 - ◊ 斜めの力に出会ったら
 - ・ 斜めの力が出てきたら必ず縦・横に分解すること!

《演習問題 6》以下の斜めの力を鉛直・水平へ分力せよ

(解法手順)

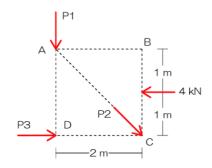
- 1) 分力の予想図を作成
- 2) ちっこい三角形を検討
- 3) 比の計算より鉛直・水平の荷重を算定

- □ 斜めの力は縦・横に分解
- □ ちっこい三角形は必ず書き込みましょう


- 6) 力のつりあい(不動の条件・つりあい三式)
 - ◊ 力のつりあいとは
 - ◊ つりあい三式(上記不動の条件より)

◇ 未知力算定

- 力がつりあっている場合の Px を求めよ
- ・ 構造力学における未知力とは、「反力」「トラスの応力」にて出てきます
- ・ 上記つりあい三式を用いて未知の力を算定


◊ 未知力算定の大前提

- ・ 力のつりあい三式で求めることができる未知力は3つまで
- ターゲット(求めたい未知力)以外の2つの未知力が入らないつりあい式を選択
- · 一番重要なのは「任意のモーメントの合計がO」です

《演習問題 7》 力がつりあい状態にある場合の P1・P2・ (解法手順)

P3 の値を求めよ

- 1) 求めたい未知力を決定(P1とする)
- 2) それ以外の未知力の交点をチェック
- 3) 上記 2) の点におけるモーメントの合計を求める
- 4) P3 も同じ過程 (モーメント) で求める
- 5) P2 は…分力して縦の合計 O or 横の合計 O を使い ます

『ポイント』

- \square 釣合い 3 式で最も重要なのは「任意の点におけるモーメントの合計が 0 $\sum M_{\scriptscriptstyle 0}=0$
- □ 何か力(未知力)をピンポイントで求めたいときは…「それ以外の力の交点に注目!」
- □ 縦の合計 0、横の合計 0 も使えるのでお忘れなく…

1.2 静定梁の反力

- 1) 荷重
 - ◊ 荷重の種類(復習)
 - ・ 集中荷重:ベクトル1本で表記される
 - ・ 等分布荷重:集中荷重に変換(囲まれるエリアに注目)
 - ・ 変分布荷重:三角形に分布、変換は等分布荷重と同じ
 - ・ モーメント荷重:部材各所に等しいモーメントの影響を与えるので注意

- 2) 支点の種類と反力数
 - ◊ 支点の種類と反力
 - ・ 動けない方向に反力が生じる

支点種類	移	8動可能な方[á	生じる可能性のある反力				
	鉛直	水平	回転	鉛直	水平	回転		
ローラー支点								
$\stackrel{\textstyle \downarrow}{}$								
ピン支点								
\downarrow								
固定支点								
mmm								

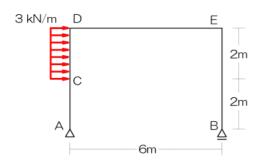
- ◊ 反力の図示
 - ・ 支点を見つけたら以下をすぐに図示

ローラー支点 ピン支点 固定支点

- 3) 反力の求め方
 - ◇ 反力算定

《演習問題8》以下の構造体の各支点反力を求めよ

(解法手順)

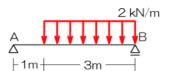

- 1) 生じる可能性のある反力を図示
- 2) 求めたい反力を決定!
- 3) 未知力 3 の法則より上記で決定した反力を算定 $\Rightarrow \sum M_0 = 0$ を使うのね
- 4) 1 つ求められたら、鉛直(縦)方向の力の合計が O $(\sum y = 0), \ \, \text{水平(横)方向の力の合計が O} \\ (\sum x = 0) などを利用しその他の反力を求める$

- □ まずは反力を図示しましょう
- □ つりあい三式を用いて未知の反力を求めましょう

- 1.3 静定ラーメンの反力
 - 1) ラーメンとは
 - ◊ ラーメンの定義
 - ・ 柱と梁で構成されている、節点は剛接合
 - 2) 反力の求め方
 - ◇ 反力の算定
 - ・ 梁の反力算定とまったく同じ!
 - ・ 支点を見つけたら以下をすぐに図示
 - ・ 鉛直方向は「V(上方をプラス)」、水平方向は「H(右をプラス)」、回転(モーメント)を「M(時計回りがプラス)」で表記するのが一般的です

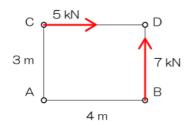
《演習問題 9》以下の構造体の各支点反力を求めよ

(解法手順)


- 1) 生じる可能性のある反力を図示
- 2) 求めたい反力を決定!
- 3) 未知力 3 の法則より上記で決定した反力を算定 $\Rightarrow \sum M_0 = 0$ を使うのね
- 4) 1 つ求められたら、鉛直(縦)方向の力の合計が O $(\sum y = 0) \text{、水平(横)方向の力の合計が O}$ $(\sum x = 0)$ などを利用しその他の反力を求める

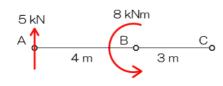
- □ 梁とまったく同じ…
- □ まずは反力を図示しましょう
- □ つりあい三式を用いて未知の反力を求めましょう

復習です(慣れたら右半分の解法手順を隠して解いてみましょう)

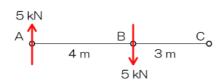

《演習問題 1》以下の分布荷重を集中荷重への置き換えよ

(解法手順)

- 1) 荷重の合計を求める
 - ⇒ 囲まれたエリアの「面積」が荷重の合計
- 2) 荷重の作用点の位置を決定する
 - ⇒ 囲まれたエリアの重心に作用


《演習問題 2》以下の A-D の各点のモーメントを求めよ

(解法手順)


- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが十、反時計回りが一)
- 6) 上記モーメントを合算

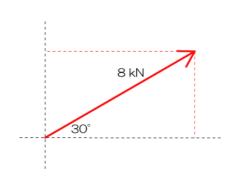
《演習問題 3》以下の各点のモーメントを求めよ

- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが十、反時計回りが一)
- 6) 上記モーメントを合算

《演習問題 4》以下の各点のモーメントを求めよ

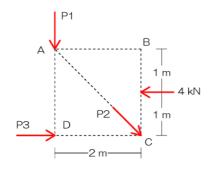
(解法手順)

- 1) 力の作用線を図示
- 2) モーメントを求める必要のある力をチェック
- 3) モーメントを求める点から作用線までの垂線を記入
- 4) モーメント=カ×距離
- 5) 符号をチェック(時計回りが+、反時計回りが-)
- 6) 上記モーメントを合算


《演習問題 5》以下の2力を合成せよ

(解法手順)

- 1) 基準となる点を指定
 - ⇒ いずれかの力の作用線上が良い
- 2) 上記点における合成前のモーメント算定
- 3) 合成後の力の大きさを算定
- 4) 合成後の力の位置を過程
 - ⇒ 1)の点からの距離をxと仮定
- 5) 合成後の力による 1) の点におけるモーメント算定
- 6) 2) のモーメント=5) のモーメントより x を算定

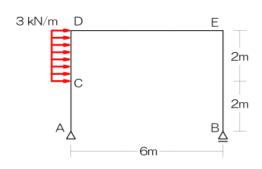

《演習問題 6》以下の斜めの力を鉛直・水平へ分力せよ

- 1) 分力の予想図を作成
- 2) ちっこい三角形を検討
- 3) 比の計算より鉛直・水平の荷重を算定

《演習問題 7》力がつりあい状態にある場合の P1・P2・ (解法手順)

P3 の値を求めよ

- 1) 求めたい未知力を決定(P1とする)
- 2) それ以外の未知力の交点をチェック
- 3) 上記 2) の点におけるモーメントの合計を求める
- 4) P3 も同じ過程 (モーメント) で求める
- 5) P2 は…分力して縦の合計 O or 横の合計 O を使います


《演習問題8》以下の構造体の各支点反力を求めよ

(解法手順)

- 1) 生じる可能性のある反力を図示
- 2) 求めたい反力を決定!
- 3) 未知力 3 の法則より上記で決定した反力を算定 $\Rightarrow \sum M_0 = 0$ を使うのね
- 4) 1 つ求められたら、鉛直(縦)方向の力の合計が O $(\sum y = 0) \text{、水平(横)方向の力の合計が O}$ $(\sum x = 0)$ などを利用しその他の反力を求める

《演習問題 9》以下の構造体の各支点反力を求めよ

- 1) 生じる可能性のある反力を図示
- 2) 求めたい反力を決定!
- 3)未知力 3 の法則より上記で決定した反力を算定 $\Rightarrow \quad \sum M_{\scriptscriptstyle 0} = 0 \ \text{を使うのね}$