過去8年過去問リスト

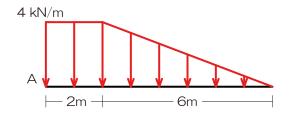
- ※ 本講座における力学系の単元では、過去8年間分のガチの過去問を解いて頂きます(一部単元にあわせて改問しています)
- ※ 青文字の範囲が第1回、赤が第2回、緑が第3回、橙が第4回の講義で対象とする範囲です、第2回以降の問題番号は仮です
- ※ 解法を見失ってしまった場合は、本講座のサブテキストの当該ページを参照下さい
- ※ 講義内では、まずは★の付いた問題(各解法の代表的な問題)から確認をしてみてください

No	解法	H26	H25	H24	H23	H22	H21	H20	H19
1	モーメント						問 01		
2	カの合成				問 02	問 03			
3	未知力算定							問 O4	問 05
4	支点の反力	問 06	問 07	問 08			問 09	問 10/11	問 12
5	梁 の 応 力	問 13	問 14	問 15	問 16	問 17/18	問 19	問 20	問 21
6	ラーメンの応力			問 22		問 23		問 24	問 25
7	3 ヒンジラーメン		問 26		問 27				
8	トラス	問 28	問 29	問 30	問 31	問 32	問 33	問 34	問 35
9	図 心	問 36							
10	断面二次M		問 37	問 38	問 39	問 40	問 41	問 42	問 43
11	応 力 度			問 44			問 45	問 46	
12	許容応力度	問 47	問 48		問 49				問 50
13	ひ ず み								
14	た わ み		問 51					問 52	
15	座 屈	問 53	問 54	問 55	問 56	問 57	問 58	問 59	問 60

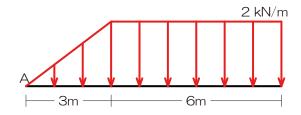
※ それって、過去7年問題集のどこに載っているの?ってのも作ったので一応以下に示します

No	解法	H25	H25	H24	H23	H22	H21	H20	H19
1	モーメント						P277 Q09		
2	カの合成				P276 Q11	P276 Q10			
3	未知力算定							P278 Q08	掲載なし
4	支点の反力	P297 Q14	P291 Q13	P298 Q12			P301 Q09	P295/301	掲載なし
5	梁 の 応 力	P290 Q14	P291 Q13	P292 Q12	P292 Q11	P293 /294	P295 Q09	P295 Q08	掲載なし
6	ラーメンの応力			P298 Q12		P300 Q10		P301 Q08	掲載なし
7	3 ヒンジラーメン		P297 Q13		P299 Q11				
8	トラス	P303 Q14	P304 Q13	P305 Q12	P306 Q11	P307 Q10	P307 Q09	P309 Q08	掲載なし
9	図 心	P279 Q14							
10	断面二次M		P280 Q13	P280 Q12	P281 Q11	P282 Q10	P283 Q09	P284 Q08	掲載なし
11	応 力 度			P286 Q12			P288 Q09	P288 Q08	
12	許容応力度	P285 Q14	P286 Q13		P287 Q11				掲載なし
13	ひ ず み								
14	た わ み		P291 Q13					P295 Q08	
15	座 屈	P311 Q14	P311 Q13	P312 Q12	P313 Q11	P313 Q10	P314 Q09	P314 Q08	掲載なし

※ 『過去問解法手順 O1』 モーメント @本講座サブテキ P5


★【問1】図のような平行な2つのカによるA・B・Cの各点におけるモーメントの値を求めよ。【H21】

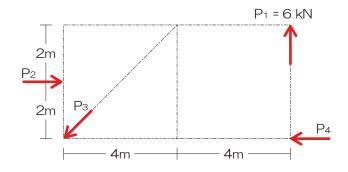
解答: $M_A = M_B = M_C = 27$ [kNm]


『過去問解法手順 O2』 力の合成(バリニオンの定理) @本講座サブテキ P6

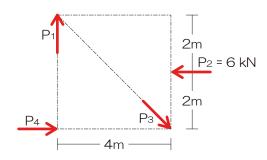
★【問 2】図のような分布荷重の合力の作用線の位置を A 点までの距離として求めよ。【H23】

解答:2.8[m]

【問3】図のような分布荷重の合力の作用線の位置を A 点までの距離として求めよ。【H22】

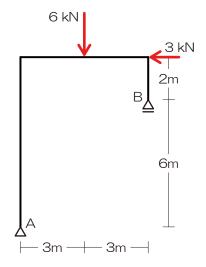


解答:5.2[m]


『過去問解法手順 O3』未知力算定(力のつり合い) @本講座サブテキ P8

★【問4】図のような4つのカ $P_1 \sim P_2$ がつり合っているとき、 P_2 の値を求めよ。【H2O】

解答:24[kNm]

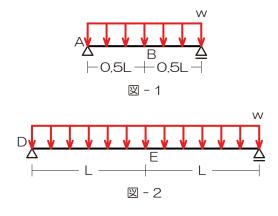

【問 5】図のような 4 つのカ $P_1 \sim P_2$ がつり合っているとき、 P_4 の値を求めよ。【H19】

解答:3[kNm]

『過去問解法手順 O4』支点の反力 @本講座サブテキ P11

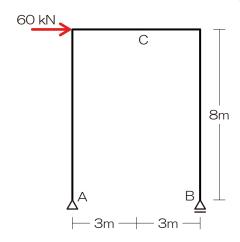
★【問 6】図のような構造物の A・B それぞれの支点の鉛直反力を求めよ。【H26】

解答: $V_A = 7[kN]$ 、 $V_B = -1[kN]$

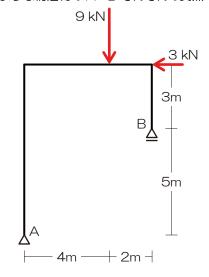

© office architype-lab All rights reserved! architype-lab.com

2級建築士 『学科Ⅳ構造』 [応 用 力 養 成 講 座]

演習問題


Page -3-Date 2015/ /

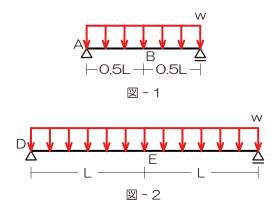
【問 7】図のような構造物の $A \cdot D$ それぞれの支点の反力の比($V_{A} : V_{D}$)を求めよ。【H25】


解答: $V_A:V_D=1:2$

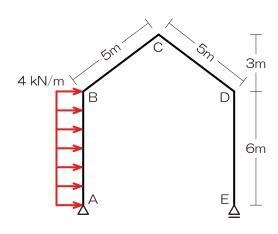
【問8】図のような構造物のA・B それぞれの支点の鉛直反力を求めよ。【H24】

解答: $V_A = -80[kN]$ 、 $V_B = 80[kN]$

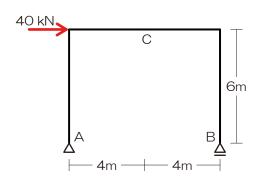
【問9】図のような構造物のA・B それぞれの支点の鉛直反力を求めよ。【H21】



解答: $V_A = 7[kN]$ 、 $V_B = 2[kN]$


© office architype-lab All rights reserved! architype-lab.com

【問 10】図のような構造物の $A \cdot D$ それぞれの支点の反力の比($V_A : V_D$)を求めよ。【H2O】


解答: $V_A:V_D=1:2$

【問 11】図のような構造物の E 点の鉛直反力を求めよ。【H2O】

解答: $V_A = 9[kN]$

【問 12】図のような構造物の A・B それぞれの支点の鉛直反力を求めよ。【H19】

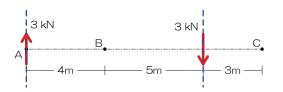
解答: $V_A = -30[kN]$ 、 $V_B = 30[kN]$

© office architype-lab All rights reserved! architype-lab.com

2級建築士 『学科Ⅳ構造』 【 応 用 力 養 成 講 座 】

演習問題

Page -5-Date 2015/ /


【【解答】】

【問1】 作用線に留意ですね

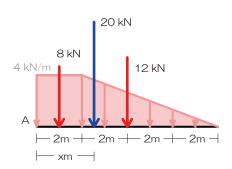
『過去問解法手順 O1』 任意の点のモーメント

- 1) 作用線を図示 ⇒ 右図
- 2) モーメントを求める点から作用線までの垂線を図示
- 3) モーメントを求める点から作用線と垂線の交点までの 距離を示す
- 4) モーメント=カの大きさ×上記の距離(カ⇒距離⇒符号 の順番で3ステップで計算しましょう)
- 5) 複数の力によるモーメントを合算

$$M_A = 3 \times 0 + 3 \times 9 = 27[kNm]$$

 $M_B = +3 \times 4 + 3 \times 5 = 27[kNm]$
 $M_C = +3 \times 12 - 3 \times 3 = 27[kNm]$

【問2】 同一点における合成前後のモーメントの値は等しい(=バリニオンの定理)


『過去問解法手順 O2』

- 1) 分布荷重を単純図形に分割、それぞれを集中荷重へ
 - ⇒ 右図
- 2) 基準となる点を指定(今回は A 点指定)
- 3) 上記点における合成前のモーメント算定 $M_{AB} = +8 \times 1 + 12 \times 4$
- 4) 合成後の力の大きさを算定

$$P = -8 - 12 = -20$$

- 5) 合成後の力の位置を仮定
 - ⇒ 1)の点からの距離をxと仮定
- 6) 合成後の力による 1) の点におけるモーメント算定 $M_{AF} = +20 \times x$

$$M_{AB} = M_{AF}$$

+8×1+12×4 = +20×x
56 = 20x
 $x = 56 \div 20$
 $x = 2.8[m]$

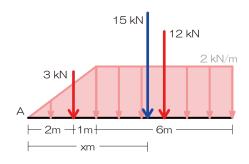
【問3】 前問と同じですね

『過去問解法手順 O2』

- 1)分布荷重を単純図形に分割、それぞれを集中荷重へ
 - ⇒ 右図
- 2) 基準となる点を指定(今回は A 点指定)
- 3) 上記点における合成前のモーメント算定

$$M_{AB} = +3 \times 2 + 12 \times 6$$

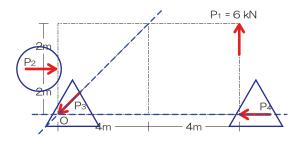
4) 合成後の力の大きさを算定


$$P = -3 - 12 = -15$$

- 5) 合成後の力の位置を仮定
 - ⇒ 1)の点からの距離をxと仮定
- 6) 合成後の力による 1) の点におけるモーメント算定

$$M_{AF} = +15 \times x$$

7) 3) のモーメント=6) のモーメントより x を算定


$$M_{AB} = M_{AF}$$

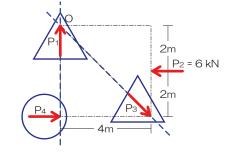
+3×2+12×6=+15×x
72=15x
 $x = 72 \div 15$
 $x = 5.2[m]$

【問4】 まーる・さんかく・さんかく・てててて・てててて…でしたね、ターゲット以外の未知力の作用線に注目です

『過去問解法手順 O3』

- 1) 求めたい未知力(ターゲット)を〇チェック
- 2) ターゲット以外の未知力を△チェック
- 3) ターゲット以外の未知力の作用線を図示
- 4) 上記作用線が交差するなら \Rightarrow 交点のモーメントに着目 $(M_o=0)$ 、平行なら \Rightarrow 直行する軸のつり合いに着目 $(\sum Y=0$ もしくは $\sum X=0$)

⇒ ターゲット以外の未知2カの交点0に着目


$$M_O = +P_2 \times 2 - 6 \times 8 = 0$$

 $P_2 = 24[kN]$

【問 5】 上記と同じ、力のつり合い(未知力算定)がわからないと力学崩壊しますよ

『過去問解法手順 O3』

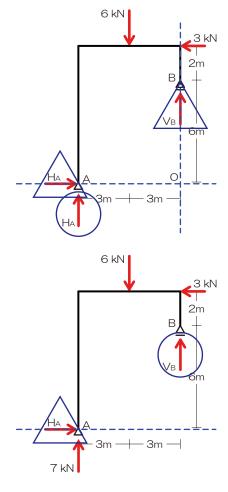
- 1) 求めたい未知力(ターゲット)を〇チェック
- 2) ターゲット以外の未知力を△チェック
- 3) ターゲット以外の未知力の作用線を図示
- 4) 上記作用線が交差するなら \Rightarrow 交点のモーメントに着目 $(M_o=0), \ \ \,$ 平行なら \Rightarrow 直行する軸のつり合いに着目 $(\sum Y=0\ \,$ もし<は $\sum X=0$)

⇒ ターゲット以外の未知2カの交点0に着目

$$M_o = +6 \times 2 - P_4 \times 4 = 0$$

 $P_4 = 3[kN]$

【問 6】 まずは反力を図示、その後は力のつり合い!のみ!


『過去問解法手順 O4』

- 1) 生じる可能性のある反力を図示
- 2) 求めたい未知力(ターゲット)を〇チェック
 - ⇒ V_Δを求める
- 3) ターゲット以外の未知力を△チェック
- 4) ターゲット以外の未知力の作用線を図示
 - ⇒ O点で交差(構造物上の点で無くても良いのですよ)
- 5)上記作用線が交差するなら⇒交点のモーメントに着目、 交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点○に着目

$$M_o = +V_A \times 6 - 6 \times 3 - 3 \times 8 = 0$$

 $6V_A = 18 + 24$
 $V_A = 7[kN]$

$$\sum Y = 7 + V_B - 6 = 0$$
$$V_B = -1[kN]$$

【問7】 まずは反力を図示、その後は力のつり合いですね

『過去問解法手順 O4』

- 1) 生じる可能性のある反力を図示
- 2) 求めたい未知力(ターゲット)を〇チェック

⇒ V_Aを求める

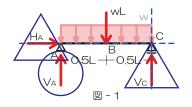
- 3) ターゲット以外の未知力を△チェック
- 4) ターゲット以外の未知力の作用線を図示

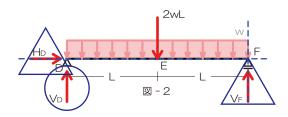
⇒ C点で交差

- 5)上記作用線が交差するなら⇒交点のモーメントに着目、 交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点 C に着目

$$M_C = +V_A \times L - wL \times \frac{L}{2} = 0$$

$$V_A = \frac{wL}{2}$$


⇒ 同様に V_Dも求める


⇒ 交点 F に着目

$$\begin{split} M_F &= + V_D \times 2L - 2wL \times L = 0 \\ V_D &= wL \end{split}$$

⇒ ゆえに

$$V_A: V_D = \frac{1}{2}:1$$

 $V_A: V_D = 1:2$

ただし、線対称な条件なので、 反力は両支点で仲良く半分ずつって暗算でも良いです

【問8】 まずは反力を図示、その後は力のつり合い!

『過去問解法手順 O4』

- 1) 生じる可能性のある反力を図示
- 2) 求めたい未知力(ターゲット)を〇チェック
 - ⇒ V_Aを求める
- 3) ターゲット以外の未知力を△チェック
- 4) ターゲット以外の未知力の作用線を図示
 - ⇒ B点で交差
- 5)上記作用線が交差するなら⇒交点のモーメントに着目、 交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点 B に着目

$$M_B = +V_A \times 6 + 60 \times 8 = 0$$

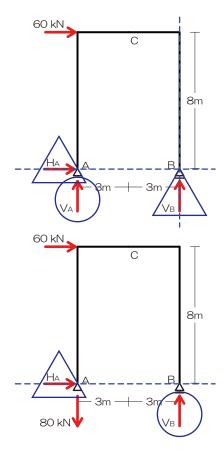
$$6V_A = -60 \times 8$$

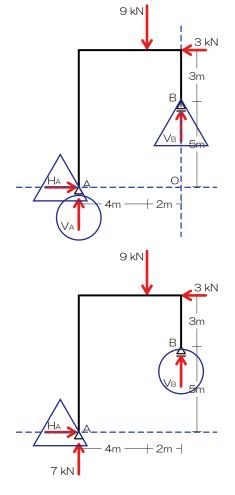
$$V_A = -80[kN]$$

⇒ 次に V_Bを求める ⇒ 鉛直方向に力のつり合いに着目

$$\sum Y = -80 + V_B = 0$$
$$V_B = 80[kN]$$

【問9】 まずは反力を図示、その後は力のつり合い!のみ!


『過去問解法手順 O4』


- 6) 生じる可能性のある反力を図示
- 7) 求めたい未知力(ターゲット)を〇チェック
 - ⇒ V_Δを求める
- 8) ターゲット以外の未知力を△チェック
- 9) ターゲット以外の未知力の作用線を図示
 - ⇒ O点で交差(構造物上の点で無くても良いのですよ)
- 10) 上記作用線が交差するなら⇒交点のモーメントに着目、交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点○に着目

$$M_o = +V_A \times 6 - 9 \times 2 - 3 \times 8 = 0$$

 $6V_A = 18 + 24$
 $V_A = 7[kN]$

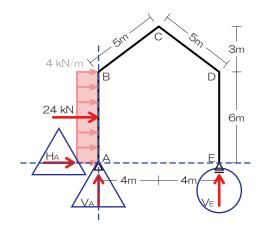
⇒ 次に V_Bを求める ⇒ 鉛直方向に力のつり合いに着目

$$\sum Y = 7 + V_B - 9 = 0$$
$$V_B = 2[kN]$$

【問 10】 問 6 と全く同じ問題ですね…

問6解答参照のこと

【問 11】 まずは反力を図示、その後は力のつり合い!のみ!です!


『過去問解法手順 O4』

- 1) 生じる可能性のある反力を図示
- 2) 求めたい未知力(ターゲット)を〇チェック

⇒ V_Aを求める

- 3) ターゲット以外の未知力を△チェック
- 4) ターゲット以外の未知力の作用線を図示
 - ⇒ O点で交差(構造物上の点で無くても良いのですよ)
- 5) 上記作用線が交差するなら⇒交点のモーメントに着目、 交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点○に着目

$$M_A = +24 \times 3 - V_E \times 8 = 0$$

 $8V_A = 24 \times 3$
 $V_A = 9[kN]$

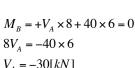
【間 12】 まずは反力を図示、その後は力のつり合い!のみ!です!よ!

『過去問解法手順 O4』

- 1)生じる可能性のある反力を図示
- 2) 求めたい未知力(ターゲット)を〇チェック

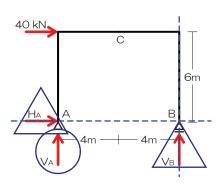
⇒ V_Aを求める

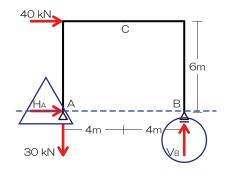
- 3) ターゲット以外の未知力を△チェック
- 4) ターゲット以外の未知力の作用線を図示


⇒ B点で交差

- 5) 上記作用線が交差するなら⇒交点のモーメントに着目、 交差しないなら⇒直行する軸のつり合いに着目
 - ⇒ 交点 B に着目

$$M_B = +V_A \times 8 + 40 \times 6 = 0$$


$$8V_A = -40 \times 6$$


$$V_A = -30[kN]$$

⇒ 次に V_Bを求める ⇒ 鉛直方向に力のつり合いに着目

$$\sum Y = -30 + V_B = 0$$
$$V_B = 30[kN]$$

© office architype-lab All rights reserved! architype-lab.com

2級建築士 『学科Ⅳ構造』 【応用力養成講座】

Page -11-Date 演習問題 2015/

[memo]