(1) 特性

### (2) 許容応力度

表 鋼材の許容応力度

|    | 短期    |    |         |    |
|----|-------|----|---------|----|
| 圧縮 | 引張    | 曲げ | せん断     | 全て |
|    | F/1.5 |    | F/1.5√3 |    |

# (3) 各部構造

# (4) 各部設計

## 3.6 鉄骨構造Ⅱ

- (1) 接合法
  - 1) 接合全般
  - 2) 普通ボルト
  - 3) 高力ボルト

|      |    | 短期     |    |     |    |
|------|----|--------|----|-----|----|
|      | 圧縮 | 引張     | 曲げ | せん断 | 全て |
| 突合せ  |    | 長期×1.5 |    |     |    |
| 上記以外 |    |        |    |     |    |

### 5) 継手の併用

# (2) 軽量鉄骨構造

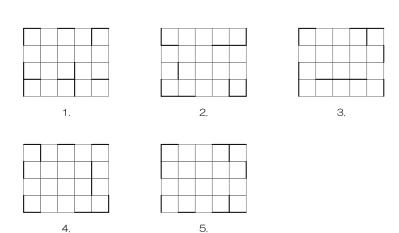


### 3.7 補強コンクリートブロック造

(1) ブロック種別と建物の規模制限

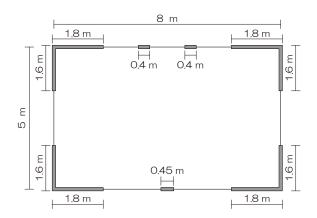
(2) 耐力壁と壁量

(3) 各部の構造


### ※ 1 風荷重(平成 25 年出題)

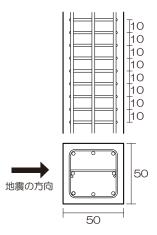
図のような方向に風を受ける建築物のA点における風圧力の大きさを求めよ。 ただし、速度圧は1,000N/m²とし、建築物の外圧係数及び内圧係数は、図に示す値とする。(平成25年)




#### ※ 2 耐力壁(平成 25 • 26 年出題)

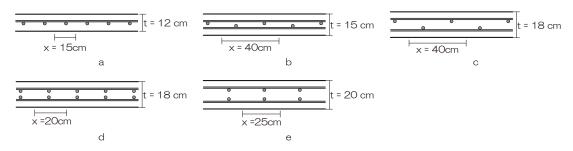
木造軸組工法による平屋建ての建築物(屋根は日本瓦葺きとする。)において、図に示す平面の耐力壁(図中の太線)の配置計画として最も不適当なものは、次の打ちどれか。ただし、全ての耐力壁の倍率は1とする。(平成25年)




#### ※ 3 壁式 RC 耐力壁(平成 23 年出題)

図のような平面を有する壁式鉄筋コンクリート造平屋建の建築物の構造計算において、X方向の壁量を求めよ。ただし、階高は3m、壁厚は12cmとする。(平成23年)




### ※ 4 鉄筋量(柱)(平成22・24年出題)

図のように配筋された柱の全主筋比  $p_s$  及びせん断補強筋比  $p_w$  を求めよ。ただし、主筋は D19(断面積 2.87cm²)、せん断補強筋は D10(断面積 0.71cm²)とし、 $p_w$  は図に示す地震力の方向に対するものとして計算するものとする。(平成 24 年)



#### ※ 5 鉄筋量(耐力壁)(平成20年出題)

鉄筋コンクリート造の耐力壁において、D10 の異形鉄筋を壁筋として用いる場合、耐力壁の断面 a $\sim$ e について、そのせん 断補強筋比  $p_s$ が最小規定である 0.25%以上となっているもの全てを示せ。ただし、壁筋は縦横とも等間隔に配置されており、  $p_s$ は下式によって与えられるものとし、D10 の 1 本あたりの断面積を 0.75cm² とする。(平成 20 年)



 $p_s = \frac{a_t}{x \times t} \times 100$ 

 $p_s$ :壁の直交する各方面のせん断補強筋比 [%]

 $a_t$ :壁筋間隔×内の鉄筋の断面積  $[cm^2]$ 

x:壁筋の間隔 [cm]

t:壁厚[cm]